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. Preface

Abstract

In this paper phases of work completed before arrghg making measurements on video
clips and their results are presented. It includesparation of experiments, recording and
processing video clips, acquiring and analyzinglitesData Video mode of Coach 5 was used
to monitor motion of Wilberforce pendulum and toasere changes of both its coordinates:
vertical displacement of the bob and its rotatioaable over time. The experiments were
carried out with different combinations of initiabnditions and recorded from two camera
perspectives. Fourier analysis of the results confthe presence of two frequencies
corresponding to normal modes. The results of nreasents also show beats between the
normal modes and each of them separately and akwifying the equations of Wilberforce

pendulum motion.

Streszczenie

Niniejsza praca prezentuje zastosowanie technikosyich do badania ruchu wahadta
Wilberforce'a oraz przedstawia wyniki pomiaréw waddrgar podtwznych i drga skretnych
(torsyjnych) tego wahadta.

Autor opisuje poszczegoélne etapy pracy saanej z tym rodzajem pomiardw tj.
przygotowanie eksperymentu, jego rejestratga pomog cyfrowej kamery wideo, obrékgk
filmow wideo, pomiary wideo z zastosowaniem proguna@oach 5 oraz anadiZ~FT (szybka
transformata Fouriera) wynikow zzyciem arkusza kalkulacyjnego Excel. Eksperymenty
zostaly przeprowadzone dla przypadku rezonanswgrgetuznych i sketnych, dla rénych
kombinacji warunkéw pocazkowych: wydhgenia spezyny i skecenia dysku wahadia.
Wyniki umazliwity znalezienie wartéci czestotliwosci wiasnych uktadu, obserwacjludniei
zwiazanych z wysfpowaniem dwdch nieznaczniezrdacych sg¢ czstotliwosci oraz kadego

z dwoch modéw oddzielnie, a takobliczenie statej spgzenia.



W pierwszym rozdziale pracy prezentowarge zagadnienia teoretyczne niedbe do
analitycznego opisu ruchu wahadta Wilberforca, &tdinejmug:

e podstawowe wiasrigi mechaniczne materiatow,

e drgania torsyjne,

« wplyw masy spgzyny na statyczne i dynamiczne charakterystyki wéhad

Sprzynowego,

* $cinanie i zginanie spzyny spiralnej,

» wahadta sprzone, mody oraz dudnienia,

» wahadto Wilberforce'a,

e analiz Fouriera.

Rozdziat drugi opisuje proces tworzenia cyfrowycttimdéw wideo, ich obrébé
przygotowanie do pomiardow oraz analvynikbw. W tej czsci pracy szczegoluwag:
poswiecono programom komputerowymnyiym do:

« obrébki filméw cyfrowych — Adobe Premiefer

e pomiaréw wideo — Coach 5,

« obrébki, prezentacji i analizy danych — MS Excel

Rozdziat trzeci zawiera opis badanego wahadta \Wobea, przebieg daviadczeé oraz
sposoOb obrébki danych. Otrzymane wyniki \8 tej czsci przedstawione w tabelach i na
wykresach.

Zastosowanie techniki cyfrowej obrobki obrazu om&gestracji danych pozwolito na
wizualizacg podiuznych i torsyjnych oscylacji wahadta Wilberforceagodnie ze stanem
mojej wiedzy jest to pierwsza wizualizacja tegouy@ebrane wyniki zostaty poréwnane z
opublikowanymi w [1] i pozwolity zweryfikow&a réwnania opisuce ruch wahadta
Wilberforca oraz oblicz§ wartas¢ statej sprzzenia.

Praca zawiera tak sugestie jak usprawniproces otrzymywania wynikdw podczas
pomiarow wideo oraz jak zwgkszy¢ ich doktadné¢, by mogly by w przyszidgci czsciej
wykorzystywane. Do pracy zaizone g dwie ptyty CD zawierajce cyfrowe filmy wideo, na
ktorych autor dokonat pomiaréw wideo.



[l. Introduction
Aims of the Thesis

Using digital techniques for investigations in matuphenomena is a modern method to
develop many interesting aspects in physics as ageih other disciplines. The use of digital
cameras, hardware and software to produce a mawik ppwerful programs to take
measurements from it opens new ways to explore reetyaof scientific subjects. Also
developing of electronic devices and significanpiavement of existing method of digital
signal processing encourage us to take their adgastin (re)investigation of some important
features of motion and/or many other aspects tieatedated to it.

A number of computer programs such as Coach 5,0Adet, VideoGraph, Vidshell can
be used to make measurements of the position ebgtt whose motion has been covered
and produced as a video clip. Information aboudnd y-axis are usually gained from certain
frames of a scaled and made with known frame ngigatimovie.

The present thesis is aimed to introduce video areasent with its useful tools that can be
used in science exploration. As an example of sugtogram Video Measurement of Coach 5
was chosen.

The author would like to illustrate and describedigtails the use of digital techniques
(video production, video measurement) with a sdienéxample of Wilberforce pendulum
motion. Therefore the preparation of experiments¢@ssing, measuring and analysing phases
of work are described. He believes that obtainesulte allow making experimental
verification of this coupled pendulum motion. Thappr shows that it is possible to
investigate, with sufficient accuracy, the time elegience of the vertical displacement and the
rotational angle of the pendulum, with use of Co&chVideo Measurement. It will be,
according to his knowledge, first measurement efrtitation angle of Wilberforce pendulum
bob and the second visualisation of its motion.

Obtained results are compared with those desciib§t] where experimental verification
of the important features of the motion of the Wilorce pendulum and results of the
experiment, during which longitudinal displacemehtts bob is measured with a ultrasound

sensor, are presented.



The author also presents verification of motion aiquns of Wilberforce pendulum and

calculates the value of a coupling constant forsuesd device.



lll. Substance
Chapter 1. Mechanics of Deformable Bodies
1.1. Mechanical Properties of Materials

When external forces or moments of forces are epgpib a solid body its shape and/or
volume can be changed. If these forces are nog ldrg body will return to its original shape
and volume immediately after the distorting foraes removed. This property of a solid body
is called elasticity.

If applied forces are sufficiently large the sdhiddy can be permanently stretched. This is

called plasticity.

The way in which forces are applied determir I—

the elastic behaviour of a solid body. One canif§pe

three such ways, namely: longitudinal, volumet Ff"‘w

and shearing forces. L

First the case when a parallelepiped block

uniform cross-sectional are&is under compressior

due to equal and opposite forces applied along-it
axis will be considered. Figure 1.1.1 that was mal Figure 1.1.1. A parallelepiped solid block of

from [2] shows such a situation. The problem can ueLaStiC material under tension

described with analogy if a tension force is agptie increase the length of the parallelepiped
in the z-direction. In both cases the same effeobserved.

When the compression force is increased friegmto F.+4F, the initial length of the
parallelepipedz will change toz-4z. Observing dependence of the frictional changength
(so called longitudinal strain defined A%/2 on the force per unit area (so called longitubtlina
stress defined adF/S) one can see that as long as force is not toe sy is proportional to
AF/S. That is:

Az _ AF AF Nz
o= o =/
Z S S

~

(1.1.1)

whereE is constant of proportionality with unit [Nfinand characterises the material from

which the body is made.



The constant is called the Young modulus of theematand is defined by:

p ol (1.1.2)

E=2
S dz

Examples of values of the Young modulus for a nunolbeolids are given in a table 1.1.1 [3].

Table 1.1.1. Elastic constants of some common substances at 20°C

Substance Young mo_glulus Shear moglulus bulk mod_tzjlus

N[ NI N[
aluminium 7,007 2,610% 7,6010™
brass 1,010 4,0110% 1,010
copper 1,3m0" 4,8110% 1,4m0%
gold 7.810% 2,710% 2,210
steel (mild) 2,110" 8,210% 1,710
* denotes approximate values

In a case of permanent stretching the relationbkipveen stress and strain is no longer
linear. The forces produce the dislocation and ggsccan not be completely reversed. The

point at which the behaviour of a solid becomes-livoear

and non-reversible is called the elastic limit. i AF
The second consideration of elastic propertiesoditl s g ,/

deals with volumetric stress. In this case forchat i |: N
produce the extension of a solid are applied tolbdy AfF > | o _ﬂ% AF
equally in all directions. It causes a change ilunve. Such A\
a situation for a cube is shown in figure 1.1.2attlvas / r
found in [3]. All forces4dF are applied perpendicularly ti AF N

F

all six faces and produce a volume chadyge Figure 1.1.2. A cubical solid block

Assuming that the elastic limit is not exceeded opp Underavolumetric sress

see that the volumetric straffV/V is proportional to the volumetric stredB/S, whereSis the
area of one face of a cube. It can be written as:
ﬂmﬁ or E:—Kﬂ (1.1.3)
Vv S S Vv
whereK is a constant of proportionality with unit [Nfirand called the bulk modulus. The

constant is a characteristic of the material uistieaty.



The bulk modulus is defined as:

E
dv

K=- (1.1.4)

n| <

The minus sign is included so théis positive becaus#-/dVis always negative (an increase

of applied force causes a decrease in volume). pkeof the bulk modulus for a number of

materials are presented in table 1.1.1. - z ~d
As a last case the situation of a shearing strdks x/_— - Vi'k :,_77
be considered. When equal and opposite forces 1~ [/ ST =7 /
applied to opposite faces of a solid block it veitit '%”I‘;,’ ‘3';’,/
showing different elastic behaviour. Assume that * » I,"/' ’,’ /”/’
T P R j

elastic limit is not exceeded and the cuboid retum PP i SO RN R R

/ ,f ‘\.\\:\\ COASELE JREER TRt ‘\\\\\\E‘*

s RN Q\\\\ll‘\t\\‘\§§‘$§\\\ \‘r:\
:

its original shape when the forces are removed. 4 AERNaiiiNHSTIINIWISINAGS

invoke this effect one can consider the distorbba Figure 1.1.3. A solid parallelepiped block

solid cuboid by equal and opposite foréeghat are Under ashearing stress

applied tangentially to opposite faces of a cubdide situation is shown in figure 1.1.3,
which was taken from [2].

The net effect of such forces is that the rectaargiaices of the parallelepiped in the plane
of he applied forces become parallelogram. A fgreeunit area applied tangentially is called
a shearing stress. The corresponding shearingy st¢raiefined (for a smalllz) asAz/y or Ay.
Taking to account recent assumption one can sééhthatress is proportional to strain:

Ayl % or %

~

=Gy (1.1.5)

whereG is a constant of proportionality with unit [Nfin

The constant is characteristic of the materiakca shear modulus and defined as:

4gF

cg=-1 (1.1.6)
S dy

Examples of the shear modulus for a number of naddeare given in table 1.1.1.

1C



As it is shown in figure 1.1.1 the change in lengtbf a parallelepiped solid block in
particular and bodies of different shape underemshg stress in general is accompanying by

changes of other dimensions andy. For isotropic bodies the following equation isida

Ax_Ay_ Az (1.1.6)

wherev is a constant of proportionality called Poissaato.
The constant has no unit and for majority of matsris enclosed between 0,2 and 0,4. When
during deformation the change in volume does ria fdacev is equal to 0,5. The presented

constants satisfy the equation:

) (1.1.7)

1.2. Tortional oscillation

When rigid body is suspended from a vertical lergftivire (or a rod) that is attached to a
fixed point and a small twist has been given tand then released from rest one can observe
torsional oscillation.

If angular displacement & and restoring torque is proportional toTit -c6, one can write

an equation:

dL d
T="-="(lw)=1"Y2=|—=
dt dt() dt dt?

2
dw_,d0_ g (1.2.1)

whereL is an angular momenturw,indicates angular velocity andepresents moment of
inertia of the rigid body about the axis of theevair rod. Looking at a last part of the equation
one gets:
d’e
| —-+c8=0 1.2.2
e (1.2.2)
This is an equation of a simple harmonic oscillaidre rigid body executes simple harmonic

oscillation about wire’s axis with a period:

T= 2nqﬁ (1.2.3)
C

11



A well-known example of a simple harmonic oscilla®a spring oscillator with a mass

attached to a helical spring with an elastic cartdtaln this case the equation determining a

T'= 2nq/% (1.2.4)

1.3. Influence of a Mass of a Spring on its Static and Dynamic

period has a form:

Usually calculations of an elongation or an ostdia period of a spring pendulum are
done with an assumption that the spring is masslasgeality this mass affects pendulum
motion.

As in [4] and [5] first a static case will be dissed. To find the solution one assumeslthat
is the unloaded spring lengtin,represents its mass akds an elastic constant of a spring.

The elongation of the unit of spring due to a fofiGe= k4l is:

Therefore portion of the lengtlz suffers an elongation:

A(dZ) = 2l = %dz (1.3.2)
Since:
A(d2) = Ak—cf (1.3.3)

one can consider an elastic constant of a smadiigmoof a spring lengtdzas:

_k

k' =—
dz

(1.3.4)

When a mas#l is placed at the end of the spring the load adtintpe element between

andz+dzbecomes equal to:

12



G =(M+m(-2)/l) g (1.3.5)

and it suffers an elongation:

G _M+m(-2)]l

A(d2) =—- (o 1.3.6
(@7 =-7 o g ldz (1.3.6)

Integrating according tefrom z=0 to z=I one gets the total elongation of the spring:

Al :jAmz:w (1.3.7)

It leads to conclusion that in static conditione #ongation suffered by a non-null mass
spring is equivalent to supposing the spring issless and adding a mass equal to half the
mass of the spring to the bob’s maékst its end.

Elaborating a dynamic case one starts with assompitiat mas#! has been placed at the
end of the spring, displaced from equilibrium piesitand then released. So, oscillations occur
and the element of the spridgsuffers a deformatiodu that is produced by the force:

F :k’du:ﬂa—udz:kla—u (1.3.8)
dz 0z 0z
besides:
daF = 4 dm="dz (1.3.9)
0z I
According to the equation:
2
dF =dm®Y (1.3.10)
ot*
one gets:
2
%—Fdz:rl—ngT‘jdz (1.3.11)
Y
hence:
d’u _ma‘u



This is the equation of a wave whose velocity is:

Vv :\/E (1.3.13)
m

To portrait the elongation of the abscissa of a poinand the force one can write:

u(z,t)=ALin(Biz+ @) Kin(wit a) (1.3.14)
ou

F(zt)=kl— (1.3.15)
0z

where w is an angular frequency afti= w'V and a, 3 are phase angles. The boundary

conditions at the upper and lower ends are:
z=0;u(O,)=0 (1.3.16a)

2
z=1: —F(|,t):|v|“;t—‘2J (1.3.16h)

which, when entered in to (1.3.14) and (1.3.15)hwissumptior = 0, gives:

u(z,t)=Asin(Bz)sin(wi+ a) (1.3.17)
F(z,t)=KIAGLCosBz)Ein(wi+ a) (1.3.18)
Therefore:
_ o 0%u(lt) 2 A .
F(,t)=M e =Mw Asing sin(t +a) (1.3.19)
hence,
f=(KI BI(M £§(3)) (1.3.20)

which, together with (1.3.13) and definition @fgives an equation :

tg(B)=(M/m)Al (1.3.21)

14



This allows to conclude that for each ratio betw#mmasdM and spring mass there is a
set of solutions that correspond to the differentles of vibration of a system. As the relation
M/m grows the solutions tend to the valy®){=(n-1)7z where n is the order number of a
harmonics. For n=1 there is a fundamental vibratidthen the mass of a spring is
extremely small in comparison M the value of fundamentafilj tends to zero and equation
becomes the classical formula of a harmonic osaoilla formula (1.2.4). In any other case,
one can write:

a/=k/(M+m/D) (1.3.22)

wherem/D is a portion of whole mass of a sprimgdD is an real number).
When combined with (1.3.20) one obtains:

D_m

= Y o- ) (1:929)

Form/M — O,D =3 and form/M - o, D = 7#/2 =2,467
For a spring whose length is small compared to ¥hefwavelength of the characteristic
vibration wavelength an assumption that the disptants of the elements of the spring are

proportional taz can be made. In such a case, the whole systemyeisegiven by:

2 | 2 2 2 |

E :%(Mw2A2)+ﬁj(izj dm=3(Me?A%) + 20 [ 227=1 a)ZAZ(M +Tj (1.3.24)
2 901 2° 4 2 3

whereM is a mass of a bob adan amplitude of its displacement from equilibriposition.

It leads to conclusion that in dynamic conditiong ¢vas to add a mass equal to one-third of

the mass of the spring to the bob’s misisat its end in order to obtain the same energy.



1.4. Torsion and Bending of a Helical Spring

One can obtain a helical spring by winding a feyela of a thin wire on a circular cylinder
and then removing the mandrel. Such a spring isgmted in figure 1.4.1a. that was found in
[2]. The wire in the diagram has been drawn witlbbhon shape to indicate behaviour of the

spring when forc& or momentM are applied, but the behaviour is independerti®fictual

shape.

Figure 1.4.1.
Silhouette of a
helical spring:

a) inan
equilibrium
position,

b) under torsion
(force F,
vertical
displacement
y),

c) asasubject
to bending
(moment M,
rotational
displacement
X)

A

If one end of such a spring is attached to a figetht and the other end loaded with a
puck-shaped bob one obtains a system to be studiedn the bob’s weight is small so that
the resulting pitch of the spring is small compgrio the radius of the cylindet one can
observe a small load acting along the axis of fireng which results in a slightly increased
pitch and a corresponding lengthening of the spriids kind of loading is accompanied by
torsion of the wire and illustrated in figure 1 4.1

When the bob is turned in its own plane the piemains essentially unchanged and the
spring yields to the torque by a slight diminutiohthe cylinder radiuss. In this case, as

shown in figure 1.4.1c the wire is bent.

1€



In torsion the individual cross-sections of theenare loaded by a torque about the polar
axis while in bending the moment acts about onxénia the plane of the cross-section.

The loadF acting along the cylinder axis has the montefitabout the centre of the cross-
section, the so called torsional momdht since its axial vector is normal to the crosgisac
In the case of bending the moment of foFeacts upon the bob whose diameter has been
assumed a&rs. This moment has a character of a bending momigrdince its axial vector
coincides with the cylinder axis and can be tramste parallel to itself to the centre of the
marled cross-section. In the loading there willdear stresses in the plane of the cross-
section which increase proportionally to the dis&afrom the wire axis and will be denoted by

T. Therefore one has:
[roaf=m, (1.4.1)

wheredfis the area element of the cross section of a wire
In the loading normal stressesact upon the cross-section and they are propaititnthe

distancey which can be expressed as:

[yt =m, (1.4.2)
The entire torsion enerdys for the helical spring is equal to:

2 2,2
E = Mtl = F s ! (1.4.3)
2GJ, 2GJ,

wherel represents a length of a spri@is a shear modulus adg denotes a polar moment of
inertia of the cross-section which in the caseimiudar area is twice the equatorial moment of
inertia [6].
The entire bending energy contained in the speng i
M2 F2rA

E. =
® 2EI  2EI

(1.4.4)

wherel represents the equatorial moment of inertiaBila Young modulus [6].

17



The expressions (1.4.3) and (1.4.4) represent rieegg content of the spring in an elastic
deformation in which the spring passes through quesece of states of equilibrium. These
formulas can be compare with equations of the machhwork performed along the pagh

andx when the loadr and momeni increase gradually from O to their final value igthare:

Fy F'x
W, =— W, =— 1.4.5
h=5 5= (1.4.5)

These lead to the determination of displacemeatsdy to be:

y=——F Xx==—F' (1.4.6)

According to the above and denotingto represent mass of bdbjts moment of inertia and
m’ the mass of spring itself one gets the equatiohshe free torsional and bending
oscillations as:

2
d s & >-y=0 (1.4.7)
dt®  (m+%m)r.l
2
d ;(+ s s> X=0 (1.4.8)
dt®  (L+x%mr )
The associated circular frequencies are:
W = LZ Wy = El — (1.4.9)
(m+Jm)rl (L+2mr)rl

When they are equal or almost so resonance ocadrsha behaviour of a spring is very
sensitive to small changes of the parameters ie@l\Fhen the present theory is no longer
sufficient and indeed one has two coupled modesaiflations.

Taking into accounfe andF’ as inertial forces:

2 2
mdy d=x

F=- F'=—(m+¥“m)—= 1.4.10
o (m+ym)— ( )

the following equations that describe coupled tsain of the spring are obtained:

18



2
Y w2 (y-k9 =0 (1.4.11)

@ X R (x—ky)=0 (1.4.12)

1.5. Two Coupled Pendulums, Normal Modes and Beats

When observing the motion of coupled pendulums showa figure 1.5.1a-c, that was
taken from [7] a several different aspects of gbdviour, which depend of initial conditions

of a device, can be noticed.

| / \
| / \ \
f \ \
[ / \ / \ \
) L L = F=L
A AN AT A P s W N AT A A T
YAVAVAVAWA A AN AN AN ! \ A NS AW YAV .
VARV VARV AR VAR (VIR VARV ' F AT LAY ML }r-_f
W - - L = —

Figure 1.5.1. Two pendulums coupled with a spring: a) 1 held at rest and 2 displaced to perform oscillations,
b) oscillations in phase, c) oscillations in anti-phase

When pendulum 1 is held at rest and pendulum 2olgterform a few oscillations one
observes that the first pendulum gradually begirsating with increasing amplitude while the
amplitude of the second pendulum diminishes. Aftertain amount of time the pendulum
initially held at rest is swinging with the ampbike of the second pendulum at the beginning of
its motion. Situation repeats and pendulum 1 latsesnergy to pendulum 2. One can easily
notice two periods, the one of oscillation of epeimdulum and the second of the wandering
energy from one pendulum to the other.

When both pendulums start their oscillation togetm®&l in phase as it is shown in figure
1.5.1b the exchange of energy is not observed whis not for frictional losses or transfer of
energy into the surroundings the oscillations w@ddindamped.

The diminishing of amplitude is also not noticeafue the motion of a system when the

pendulums are started together but in anti-phdasea{®n in figure 1.5.1c). This motion is



characterised by a single frequency. Every partafystem maintains a constant phase
relationship with respect to every other part. Sastillations are called natural (or normal)
modes.

The oscillation frequenchym of the pendulums oscillating in phase is pradictile same
as that of free pendulum because the spring idyhagither contracted nor extended during
motion. This mode is also called a symmetric mode.

When pendulums oscillate in anti-phase the sprictg at every time and similarly to
gravity force tends to restore equilibrium. Sitaatcan
be then described as motion of a pendulum w
stronger gravitational force — bigger value
gravitational constarg.

Therefore the frequency of the second mode, the

called anti-symmetric mode, is higher then thathef
first:

fasym> fsym

Every free oscillation of the system can be regahr

as a superposition of normal modes. Some exampde:

presented in figure 1.5.2.

As it has been already mentioned two modes do
proceed with the same frequency so time requirec fi | |
full oscillation is: Tsym> Tasym IN time Tasym ONE mode
makes one full oscillation and h@gmTasymt0 COVer @ Eigyre 1.52. Examples of superposition of

- |
part of the next oscillation. normal modes

So:
2n -T
S x= 2Pom o) 20 (¢ g (15.1)
Tasym Tsym_Tasym Tasym 1:sym

Since during each oscillation the gairxisne gets oscillations of the first mode when the

second has gained the amotrih phase:

f
n=ll=____sm (1.5.2)
x 2f

asym fsym)
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Whenn is integral or a half-integral number the transfeenergy from pendulum 2 to
pendulum 1 will be completed.
The total energy of a pendulum for small angulaptdicement is given by:

_mgA®
| 2

E (1.5.3)
wheremis the bob’s mass$the length of a pendulurg,represents acceleration of gravity and
A characterises amplitude of displacement.

Sincemg/2lis the same for all cases shown in a figure 1dn@,gets, for the superposition of
modes, the balance of energy:

(VaA)*+ (VAP+ (YoA)+ (VoAP=A? (1.5.4)

Similar balance holds for the potential energy spang, which is proportional to the square
of its extension (or contraction). As long as sppsition principle applies (small oscillation)
the total energy is equal to the sum of the ensrgiehe normal modes into which the motion
can be decomposed.

Coordinates exhibiting the total energy as a sumr awormal modes are called normal
coordinates. If one assumesas a displacement of the pendulum 1 &nds a displacement

of the pendulum 2 those coordinates can be wréten

(=% (X+X2) (1.5.5a)
n= ) (Xl-Xz) (155b)

Considering the general case whreis neither integral nor half-integral one can conel that
the motion will be strictly periodic if the frequeiasfsym andfasymsatisfy the condition:

P _ q
P _ 9 _ 1.5.6
: : r ( )

wherep andqg are integers. In such a situation motion will refpéself after timer but return
of energy will in general take a fraction of thené 7.

If fsym/ fasymiS NOt @ rational number, motion of a system nalt be strictly periodic.



When coupling is weak (a delicate spring) the valfi@ is large because is inversely
The time that elapses until the faster mode hasedgaa phase angle afteroscillations is
given by:
1 1

nT..=n = 1.5.7
sym f 2(f o~ f ( )

sym asym sym)

Thus energy will return to the first pendulum afteiperiod that is twice so. This period -

20 Tsymis called beat period. Denoting thisBiene has:

B=2nT, =+ (1.5.8)
-
asym sym

There isN beats in one second then:

=f_ —f (1.5.9)

1.6. Wilberforce Pendulum
SIS L L L

The Wilberforce pendulum was named for its invenitawnel Robert
Wilberforce and represents an interesting caseoapled oscillations.
The device consists of a helical spring of almosim@ters and &
cylindrical bob of the same radius. The bob hag feanes protruding
from it and there is a nut on each of the vanesghwvban be moved tc
change the moment of inertia of the system. Sucpeadulum is
illustrated in figure 1.6.1. which was found in.[&] can be treated as
special case of the coupled oscillations of thegiiidinal and the
torsional modes for a mass hanging in a flexiblehespring.

A weak coupling is due to torsional strains comfrgm stretching

and shrinking of the spring and the axial strainsrdy twisting. When

the frequencies of both modes are almost equatiieegy of the systen
) Figure 1.6.1. Silhouette
is transferred back and forth between these twoesod of the Wilberforce

pendulum
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One can analyse analytically this phenomenon asguthiere are two coordinates the
vertical displacement of a bob all- the angle of its rotation and that in the edpilim
position z=@=0. If one considers a massless spring, with its itokgal constank and a
torsional constand, to which a masm, with a moment of inertia about its vertical akifias
been attached and assumes a linear coupling dbtirecz0/2, the Lagrangian of the system

has a form:

L = ym& + ¥ymé - 4 kz? - %,060% - 1, 26 (1.6.1)

Thus the equations of motion of Wilberforce pendulare:

d?z
m?+kz+}/2£0=0 (1.6.2a)
2
I%+5€+}/252:0 (1.6.2b)

As it has been already shown in paragraph 1.2 wliecoupling does not take place one can
observe simple oscillations.
In order to eliminate coordinafrom the equations of motion, one can solve trst 6f

them for@:

£ dt* me ( )
and using the values for the longitudinal and rotet! frequencies:
W’ =kim ; =09/l (1.6.4)
get fourth order derivation equation of a form:
d*g 2 ,,d°@ » 5 &
+(w) +w +(wiw; — 6=0 1.6.5
dt4 ( 9) t2 ( (%) 4m|) ( )
Assuming a solution to be:
6(t) = Ae™" (1.6.6)



one comes up with a bi-quadratic equation:

6.2

4Aml

w' = (] +wp)w” +(wiew; =) =0

By solving this formula frequencies of two normaldes can be calculated:

of = 0P + 0k —[(f - f)? —%)ﬁ}

2
g%
W = Yl w; + wj +[(wl - wj)® ‘H)]Z}

Forw= we = wthey can be simplified to:

2
> > N
- +(—)?
“ (4ml)
£ 1

@ =w2_(4ml)2

(1.6.7)

(1.6.8a)

(1.6.8b)

(1.6.9a)

(1.6.9a)

Being analogous to the situation described in pa@yl.5. the values @ and ay are

close to each other and their differermge= w - w is the beat frequency between the two

normal modes.

The general form of the rotation angle as a fumatibtime will be a combination of the

two normal modes:
6(t) = Asinawt + Bcoswt + Csinw,t + D cosw,t

when A, B, C, D are amplitudes of sine and cosinepmrants of the modes.
Thus:

&t) = Aw, coswt —Bw sinwt +Cw, cosw,t — Dw, sinwst

&t) = - Aw? sinwt - Bw? coswt - Ca? sinw,t — Daw? cosw,t
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(1.6.11)

(1.6.12)



Using the equation of motion one gets general eguddirz as a function of time in a form:

Z(t) = (2laf 1 £)(Asinawit + Bcoswt)
+ (21t 1 £)(Csinaw,t + D coswit) (1.6.13)
- (2/9)(Asinawt + Bcoswit + Csinaw,t + D cosw,t)

from which
At) = (21} | €)(Acoswit - Bsinwit)
+ (21 | £)(C cosw,t — Dsina,t) (1.6.14)
- (2/9)(Aw, coswt — Bw sinwt + Cw, cosw,t — Dw, Sinw,t)
From the initial conditions,

2(0)=z, &0)=0 6(0)=6, &0)=0 (1.6.15)

where an initial vertical displacement and initiaigt (but no initial velocity in either

coordinate) are given, one can gain values foathplitudes:

A=C=0 (1.6.12)
B=(af —af) ez, /2! - (af - &F)6)] (1.6.13)
D =—(af - a?) ez, 121 —(ef - a%)8),] (1.6.14)

Therefore the equations for both coordinates astimms of time have the form:

O(t) = (2, /21)(@f - a?) ™ (cost — coswt)
(1.6.15)

+ 0y (@ —3) (] —wj) cosiyt = (w; —wj) coswt]

2(0) = 2 (@ ~ ) (@ - ) coseyt - (@} - f) coswyt] 16,16
= (216, 1 £)(af ~ wl) ™ (ef - @) (@] - w}) % (cost — coswt) .
The vectorX describing the motion by such equations is a liceanbination of the two

normal modes withé describing longitudinal unit vector aé@dorsional unit vector:



X(t) = z(t) 2+ 6(t)6 = AN, coswt + A7, Cosm,t (1.6.17)

where /7, and 77, are the normal coordinates of the form:

A, = é+(2y£)(wf ~ )2 (1.6.18a)
A, = é+(2%)(w§ ~0w?)2 (1.6.18b)
Also from equations (1.6.9) the coupling constat be calculated:

£=(w’ —ad)Vml (1.6.19)
1.7. Fourier analysis

A mathematical technique known as Fourier analyarsbe used to represent any function
f(x) (wherex may be position otime) as a series of periodic functions that is cafedrier

series and can be written as:

F(x) = Y24, + a,cosx+ a,cos2x+ ... +a,cosnx

+b,sinx+b,sin2x+...+ b sinnx+...= 1)

Yea, + Y &, CosnX+ b, sinnx

n=1 n=1

The series consists a constant tévtay and sum of sine and cosine terms of different
amplitudesa,, b,. The frequencies of the trigopnometric functiong &armonics of the
fundamental frequency of To represent a certain waveform by Fourier serages of the

coefficients have to be determined by integratibf(>g over period277with formulas:

2
a, -1 _[ f (X) cosnxdx (2)
T 0
1 2
b == j f (X) sin nxdx (3)
T 0

26



The first term can be obtained by solving:

_ 1 2
ao—gT!f(x)dx (4)

With use of Fourier analysis fundamental freques@é signals can be determined. Exact
formulas for coefficients vary for different funatisf(x) (periodic, nonperiodic function, wave

packet) being analyse [9].
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Chapter 2. Creating Video Clips, Preparing to Measure and Analysing Results

2.1. Setting up Experiments and Recording Video Clips

Real experiments on motion of Wilberforce penduluvere
carried out with the same device as described]inffie figure 2.1.1

illustrates such a pendulum which contains:
« aspring of 17 turns of a steel wire with radiag,25x10% m
whose unloaded length is equal tg=1,30x10" m and
projected radius of the helix B= 2,60x10% m; and whose
mass ian=3,43x107 kg,
« a cylindrical bob with a radiu®,=3,50x10% m and mass
m=4,3032x10" kg that contains two vanes protruding from itFigure 2 1.1 Silhouette
on which identical, free-to-move, nuts are located. of a used pendulum
Basing on founding about resonance of longitudaral torsional oscillations reported in
[1], experiments were done for the pendulum wishnitits placed symmetrically at a distance
AR = 3,50x10° m from the edge of a bob which corresponds to aevafta moment of inertia
| = 0,000335 kgrif and with different combinations of the initial aitions determined by the

longitudinal displacement, and an angle of twist of a bo&. These combinations are
presented in table 2.1.1.

Table 2.1.1. Combination of the initial conditions

experiment'’s initial conditions
number Zo [M] & [rad]

1 0.04 0

2 0.04 w2
3 -0.04 0

4 -0.04 -T72
5 0 -T72
6 -0.04 w2
7 0 w2
8 0.04 -T2

Experiments were carefully set up in a way thaivadl placing a video camera under the

pendulum’s bob as well as in front of it. Specitéation has been given to background and
lighting.
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For each set of initial conditions a number of omeute clips of Wilberforce pendulum
motion from both camera perspectives has beendedousing &ony digital video camera
DCR-TRV 8ESpecific information about the camera and it$uiess can be found in [10].

All digital movies were carefully viewed on a bigreen and the best one for every set of
initial conditions has been chosen for further pssing. Approximately 1200 captured frames

for every combination af, and & with a program for video editing were used.

2.2. Editing Digital Movies with AdobePremiere

AdobePremiere is an advanced program for creatmbealiting digital movies. It allows
capturing and performing necessary processing iigutedding transitions, titles, motion,
transparency etc.). After processing with the pmog final clip can be produced in various
formats. More information about the program andetgures can be found [11].

To prepare video clips for data video measuremeht @ few simple processing acts have
been performed. After capturing, each movie wastoutonsist of 1025 frames presenting
motion of the pendulum. Every movie was also crapjgereduce its size from 78876 pixels
(PAL standard) to a size shown in table 2.2.1. Beeaduring process of covering a digital
camera interlaces movie’'s frames as a last an operaf deinterlacing was proceeded.
Finally all video clips were converted into an *%.aformat. The table 2.2.1 contains

information about both kinds of movies made wittifferent camera perspective.

Table 2.2.1. General information about video clips

camera perspective bottom face
frame width 380 pixels 480 pixels
frame height 380 pixels 320 pixels
frame length 41 sec 41 sec
frame count 1025 1025
frame rate 25 per sec 25 per sec
average size 41 Mb 42 Mb
video compression Cinepak Codec Cinepak Codec

The figure 2.2.1a presents a first frame of a meaeered from the bottom and consisting
of motion of the pendulum that has been releasédinitial longitudinal displacement
Z,= 0.04 mand initial rotational anglé, = 0. The figure 1b shows a first frame of a movie

done from front perspective and with the sameahaonditions.



Figure 2.2.1. First frames of video clips taken: a) from the bottom b) from the front

/ AY&Z avi
initial \ initial

camera

perspective  longitudinal rotational
b=bottom displacement angle
f=face (0=0m 00=0

0+04=0,04mm 0+5=1/2m
0-04=-0,04m 0-5=-1/2T

Figure 2.2.2. An explanation of a movie file name

All movies (*.avi files) are recorded on 2 CDs (W&kforce_b and Wilberforce_f) and
enclosed in the thesis. Figure 2.2.2. explains saimg have been given to them.

2.3. Program Coach 5 and Data Video

Coach 5 is an integrated software package develtyethe CMA Foundation of the
University of Amsterdam. The program is an openir@mment for investigation in science
and technology and integrates measuring, data sieawyd processing, modelling, controlling
and video measuring. Only the last mode of the ammg- Data Video — is essential for the
present case and will be described in depth.

Video measurement allows collecting data from digiideo clips in form of points that
consist ofx, y coordinates of a monitored element taken at cetbaie. The location of the

item of interest is marked by clicking on its pasitin chosen frames of the whole movie. The
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program supports *.avi and *.mov digital video fats Although Coach 5 allows plotting
data in graphs, viewing and calculating new questiin tables and performing analysis,
obtained data were exported from the program adifife.
Further mathematical elaboration was carried oth @iMicrosoff Excel 97 spreadsheet.
To proceed with video measurement one has to daterm
» a scaling factor — the distance on the movie fréma¢ corresponds to actual (real life)
distance,
» alocation of the axis for future measurements,
* asetting of the origin,
* a time calibration by noting the rate (x/per segowith which the processing movie
has been made.
All those requirements have been taken into accdurihg the process of preparation of a
movie to be measured and therefore:
* as a scaling factor a value of a bob’s diameteibeas used,
* movies were covered with a rate of 25 frames pewrse,
» information about a location of the origin and measent procedure is described in
the next chapter.
Specific information about Data Video mode of Co&atan be found in [12]. Examples of

Data Video activities are provided in [13].

2.4. MS Excel and its Fast Fourier Transform

Program Microsoft Excel is used to calculate, analyze and plot tesof video
measurements. Data is mathematically calculatdeixoel spreadsheet and results are plotted
in separate sheets. A data analysis tool — Foanetysis that uses fast Fourier transform
(FFT) —is applied to time domain dataf(t) or &=f(t) to find their components. As a result of
such a transformation a set of complex numbereguigncy domain output is gained.

Fourier transform is based on the principle thag &mction can be represented as a
superposition of sinusoidal components with ceréanplitude.

A frequency step in Excel FFT is indicated by thenber of measured point which has to be

an even number power of 2 and amplitude is obtafread an absolute value (modulus) of a
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complex number. These are displayed as a grapmgfitades of the components against

their frequencies. Such a graph is called a spectru
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Chapter 3. The Experiments and Results

3.1. The Experiments

The video measurements were carried out with atd@program Coach 5.

On the series of 8 clips with a motion of Wilbederpendulum viewed from its front the
measurements of bob’s position on each frame wakent The data, obtained by marking
with Coach 5 Data Video mode a certain point ondéeice, contained 1024 triplets tirhe
and position coordinatesandy. Only the pieces of information gnas a function ofime
were exported as a *.dif files and analyzed laterkigure 3.1.1 shows a part of Data Video
window with a frame of a movie with a measured pofdso an axis and a scaling factor are
shown.

On the next 8 clips, taken from the bottom of teagulum, measurements of a position of
the nut on a pendulum’s vanes have been taken. dlseycontained 1024 triplets tine and
position coordinates andy. According to the fact that an origin of the caoate system was
marked in the center of the pendulum, a rotatiogleanvas mathematically calculated from
bothx andy coordinates. Figure 3.1.2 presents a part of Matao window with a frame of a
movie with a measured point, an axis and scaliotpfa

To present all finding and carry on calculationMirosoft® Excel 97 spreadsheet was
used.

Figure 3.1.1. A part of a Data Video window for
a movie recorded from the front

Figure 3.1.2. A part of a Data
Video window for a movie
recorded from the bottom



3.2. Statements of Experimental Results

The table 3.2.1 presents a part of a Micrds&kcel spreadsheet table in which data has
been mathematically elaborated.

The first column contains andex number, which is the same as a number of a frame o
which the measurement took place. The next coluomtainstime related to a frame at which
a value ofy was determined in a certain video clip.

Because the axis was set as the same for everg fitmenquantity calculated with use of a
formula:

yn - yaverage

represents vertical displacement of the pendulumzbén averagesalue ofy that represents
an equilibrium position of a bob is shown in a tbucolumn. The next column of the table
encloses values of displacement

On those results a fast Fourier transformation besn performed. The result of the
procedure — a set of complex numbers — is preseantdte sixth column. Information about
amplitude of a certain frequency component is iatfid by the absolute value (modulus) of
those complex numbers. Those values are presentghth column, which is preceded by a
column that shows values of frequencies. To noseaimplitudes, corresponding to Fourier
analysis to unity a maximum value of this quaniigs been determined and used to create the

last column of the table according to an equation:

no= A
Ahor - .

Ava

Table 3.2.2 contains data and calculated resuligeceto the
second coordinate, the angle of rotat@rSimilarly to the first
table three first columns enclosidiex time andy. The next one

presents information aboutposition component of the locatio

of a bob’s nut. The origin has been placed on efreiyie in a

Figure 3.2.1. Coordinates X,
y and c for video clips
covered from the bottom

centre of a bob so its rotation angle can be cafedlfromx and
y with use of trigonometry. Therefore the valueofhypotenuse

in a triangle shown in a figure 3.2.1 has beenrd@teed and presented in a fifth column.
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To calculate an angle a following if-and-statentesd been used:

IF {AND (y<0,x<0), 22t- ACOS(y/c), IF [AND (y>0,x<0), -ACOS(y/c), ACOB}}

Such a formula was used to overcome difficultied #ppear when function arctangent was
used for angles outside the rangeT]O,

Results of the calculations are contained in éhsteiumn of the table 3.2.2 and were used
to obtain the average value of the angle that sgprtis an equilibrium position of a bob
(placed in the next column). A formula:

a, _aavrage
allows calculating the second coordinate — tordidigplacement of the pendulum b&bThis
information is presented in the eighth column. &ny to the first table next columns consist
of information about the results of the fast Foutiensformation, amplitudes of certain
frequency components, maximum amplitude and nosadlamplitudes.
Based on the calculations a number of diagrams baea drawn. Diagrams 3.2.1 to 3.2.16
with even numbers present vertical displacenzeas a function of time for different initial
condition while those of odd numbers illustrate Feuspectrum foe(t). The diagrams 3.2.17
to 3.2.32 with even numbers present rotation afigis a function of time for different initial
condition while those of odd numbers illustrate Fe@uspectrum foAt).

Values of frequencies of moddés=1,031 [Hz] and f,= 0.982 [HZz] where then used to
calculate a frequency of a produced ‘tone’, a Ingatate and the coupling constant (formula

(19) in paragraph 1.6.) which were found to be:

f=1/2(f1+ f2)=1,007[Hz]
fo= f1- f2:0,049[HZ]
£= 0,046 [kgifad/ s]
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3.3. Some Consideration of Video Measurement Accuracy

Establishing accuracy for video measurement islprohtic because it is not a commonly
used method. The accuracy of such a measurememdiidy determined by the quality of a
movie (focus) and its size (resolution).

During a process of scaling both kinds of moviég humber of pixels indicating a real
length has been measured to be:

» for the video clip taken from bottom perspective:

125pix = 7,010% m (1pix = 5,610 m),
» for the video clip taken from face perspective:
155pix = 7,0<10% m (1pix = 4,5<10* m).

It has been experimentally checked that the molvéimnensions 386380 pixels presented
in a full size on a computer screen of 17”7, wittesolution 1024768 has a length
| = 2,00x10"m. The resolution of movies and their focus allomsaling a certain point with
accuracy+2 pixels which on such a screen is equallts + 1,3x10° m. Therefore estimated
accuracy of the video measurement from a movie is:

» for the video clip taken from front perspective éanarked point on every frame):

dy = #0,9x10° m
» for the video clip taken from bottom perspectivep@nt and axis marked on every
frame):dy = Ax = #2,2x10° m

According to accuracy of a position and a fact thafrequency step of fast Fourier
transformation depends on a number of measuredsptiia accuracy for frequency has been
estimated as:

» for the video clip taken from face perspectie= # 0,025 Hz

» for the video clip taken from bottom perspectidé= + 0,05 Hz
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3.4. Conclusions

Video measurements of motion of the Wilberforcecagnm allowed observing both types
of the coupled oscillations, longitudinal and torgl ones. Visualization of the torsional
oscillations is especially interesting, as in tmevous paper [1], where ultrasonic sensor was
used instead of a video camera and only the lodigidh oscillations were observed. All
experiments in this paper were carried out fordhses of resonance between both kinds of
oscillations. Fourier analyses of the results heeaealed presence of one or two normal
modes in each type of oscillations. According totioro of coupled pendulums, shown in the
figure 1.5.1 the normal modes of the Wilberforcexgqqdum are obtained for certain initial
conditions corresponding to releasing the coupktplums in the same phase (first mode) or
in anti-phase (second mode). Table 3.4.1 summalimagion of the peaks of frequency in

spectrums.

Table 3.4.1. Frequency values for peaks in spectrums

Experiment’s initial conditions face perspective bottom perspect ive
number Zo [M] 6o [rad] f1 [HZ] f, [Hz] f1 [HZ] f, [Hz]
1 0.04 0 0.982 1.031 0.982 1.031
2 0.04 2 - 1.031 - 1.031
3 -0.04 0 0.982 1.031 0.982 1.031
4 -0.04 -T2 - 1.031 - 1.031
5 0 -T72 0.982 1.031 0.982 1.055
6 -0.04 2 0.982 - 0.982 -
7 0 w2 0.982 1.031 0.982 1.055
8 0.04 -T2 - 1.031 0.982 -

The first mode is visible as a dominating in theexment 6 when the spring is pulled
downwards and wound more tightly (figure 3.2.152.B6, 3.2.31, 3.2.32) and in the
experiment 8 when the spring is lifted and unwodgiigures 3.2.11, 3.2.12, 3.2.27, 3.2.28).
The second mode is dominant in experiment 4 whensthring is pulled downwards and
unwound (figure 3.2.7, 3.2.8, 3.2.19, 3.2.20) anthe experiment 2 when the spring is lifted
and wound (figure 3.2.3, 3.2.4, 3.2.23, 3.2.24cd&rse it is very difficult to set the pendulum
in motion very accurately, for almost all cases titleer mode is noticeably present but its
amplitude is very small.

For the rest of the experiments (1, 3, 5, 7) thatbef both modes are observable. It is

indicated by almost the same (or close) value ef dimplitudes corresponding to the two
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modes in the spectrum (figure 3.2.1, 3.2.2, 3.3.8,6, 3.2.9, 3.2.10, 3.2.13, 3.2.14, 3.2.17,
3.2.18,3.2.21,3.2.22, 3.2.25, 3.2.26, 3.2.2938R

For measurements done on video clips covered frofaca perspective (longitudinal
oscillations) all peaks of frequency in spectrumes@bserved whefi = 0,982[Hz] and
f, = 1,031[Hz]. The same results, within experimental accuracg, gained for torsional
oscillations. The average frequerfcy 1,006[Hz] (‘tone’ frequency) and the beating rate
f, = 0,049[Hz] are in agreement with theoretical values for cakeesonancef{ = f, =
1,01[Hz]) and results presented in [1].

The results allowed calculating the value of caupliconstant and confirm that the
assumption about the linear coupling used wheningrithe motion equations (1.6.2a-b) is
valid.

An increase of accuracy can be obtained by enlgrginumber of measured points or/and a
size of a video movie (its width and height). Tbiimnges cost increase of time for taking date

and size of a movie (in Mb).
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IV. Closing Remarks

The use of digital techniques seems to be useftllpanverful tool for (re)investigation of
various phenomena. Although it requires consideratdrk to prepare a movie and special
processing to make measurements, it is still wdding. The fact that once produced the
movie which can be copied and used by many invatstig encourages taking advantage of
such a measurement. Especially having in mind tlesvigg number of computers that are
used in education at the secondary and universigl lit indicates one new future use of ICT
in schools.

Use of a data video measurement allows studergs tith their interest outside of school.
It can also be used to explore and analyze margcéspf motion in everyday life.

The present study shows that already existing pragrsuch as Coach 5, AdobePremiere
and Excel can be used with great success in tltedfescientific investigation. It also points
out that an increase in accuracy of data video dedrease in time necessary to take
measurements would be welcome especially when ungbar of video points is large. This
can be obtained by automating the data collectioocgss. Therefore a procedure of
automatically recognising and marking a charadienmint on every frame (for example one
certain colour) could be implemented into a program

Nevertheless also more complicated examples ofamaind aspects related to it can be
investigated with use of data video. An examplswath an interesting problem for further

consideration can be a study on motion of a hunaaty.b
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