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I. Preface 

 
Abstract 

 

In this paper phases of work completed before and during making measurements on video 

clips and their results are presented. It includes preparation of experiments, recording and 

processing video clips, acquiring and analyzing results. Data Video mode of Coach 5 was used 

to monitor motion of Wilberforce pendulum and to measure changes of both its coordinates: 

vertical displacement of the bob and its rotational angle over time. The experiments were 

carried out with different combinations of initial conditions and recorded from two camera 

perspectives. Fourier analysis of the results confirm the presence of two frequencies 

corresponding to normal modes. The results of measurements also show beats between the 

normal modes and each of them separately and allow verifying the equations of Wilberforce 

pendulum motion. 

 

Streszczenie 

 

Niniejsza praca prezentuje zastosowanie technik cyfrowych do badania ruchu wahadła 

Wilberforce'a oraz przedstawia wyniki pomiarów wideo drga  podłu nych i drga  skr tnych 

(torsyjnych) tego wahadła. 

Autor opisuje poszczególne etapy pracy zwizanej z tym rodzajem pomiarów tj. 

przygotowanie eksperymentu, jego rejestracj za pomoc cyfrowej kamery wideo, obróbk 

filmów wideo, pomiary wideo z zastosowaniem programu Coach 5 oraz analiz FFT (szybka 

transformata Fouriera) wyników z uyciem arkusza kalkulacyjnego Excel. Eksperymenty 

zostały przeprowadzone dla przypadku rezonansu drga podłu nych i skr tnych, dla rónych 

kombinacji warunków pocztkowych: wydłu enia spr yny i skr cenia dysku wahadła. 

Wyniki umo liwiły znalezienie wartoci cz stotliwo ci własnych układu, obserwacj dudnie  

zwi zanych z wystpowaniem dwóch nieznacznie róni cych si  cz stotliwo ci oraz kadego 

z dwóch modów oddzielnie, a take obliczenie stałej sprzenia. 
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W pierwszym rozdziale pracy prezentowane s zagadnienia teoretyczne niezbdne do 

analitycznego opisu ruchu wahadła Wilberforca, które obejmuj: 

• podstawowe własnoci mechaniczne materiałów, 

• drgania torsyjne, 

• wpływ masy spr yny na statyczne i dynamiczne charakterystyki wahadła 

spr ynowego, 

• cinanie i zginanie spryny spiralnej, 

• wahadła sprz one, mody oraz dudnienia, 

• wahadło Wilberforce'a, 

• analiz  Fouriera. 

Rozdział drugi opisuje proces tworzenia cyfrowych filmów wideo, ich obróbk,  

przygotowanie do pomiarów oraz analiz wyników. W tej cz ci pracy szczególn uwag  

po wi cono programom komputerowym uytym do: 

• obróbki filmów cyfrowych – Adobe Premierer®, 

• pomiarów wideo – Coach 5, 

• obróbki, prezentacji i analizy danych – MS Excel®. 

Rozdział trzeci zawiera opis badanego wahadła Wilberforca, przebieg dowiadcze  oraz 

sposób obróbki danych. Otrzymane wyniki s w tej cz ci przedstawione w tabelach i na 

wykresach. 

Zastosowanie techniki cyfrowej obróbki obrazu oraz rejestracji danych pozwoliło na 

wizualizacj  podłu nych i torsyjnych oscylacji wahadła Wilberforce'a; zgodnie ze stanem 

mojej wiedzy jest to pierwsza wizualizacja tego typu. Zebrane wyniki zostały porównane z 

opublikowanymi w [1] i pozwoliły zweryfikowa równania opisujce ruch wahadła 

Wilberforca oraz obliczy warto  stałej sprz enia. 

Praca zawiera take sugestie jak usprawni proces otrzymywania wyników podczas 

pomiarów wideo oraz jak zwikszy  ich dokładno , by mogły by w przyszłoci cz ciej 

wykorzystywane. Do pracy załczone s dwie płyty CD zawierajce cyfrowe filmy wideo, na 

których autor dokonał pomiarów wideo. 
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II. Introduction 

Aims of the Thesis 
 

Using digital techniques for investigations in natural phenomena is a modern method to 

develop many interesting aspects in physics as well as in other disciplines. The use of digital 

cameras, hardware and software to produce a movie and powerful programs to take 

measurements from it opens new ways to explore a variety of scientific subjects. Also 

developing of electronic devices and significant improvement of existing method of digital 

signal processing encourage us to take their advantages in (re)investigation of some important 

features of motion and/or many other aspects that are related to it. 

A number of computer programs such as Coach 5, VideoPoint, VideoGraph, Vidshell can 

be used to make measurements of the position of an object whose motion has been covered 

and produced as a video clip. Information about x- and y-axis are usually gained from certain 

frames of a scaled and made with known frame rate digital movie. 

The present thesis is aimed to introduce video measurement with its useful tools that can be 

used in science exploration. As an example of such a program Video Measurement of Coach 5 

was chosen.  

The author would like to illustrate and describe in details the use of digital techniques 

(video production, video measurement) with a scientific example of Wilberforce pendulum 

motion. Therefore the preparation of experiments, processing, measuring and analysing phases 

of work are described. He believes that obtained results allow making experimental 

verification of this coupled pendulum motion. The paper shows that it is possible to 

investigate, with sufficient accuracy, the time dependence of the vertical displacement and the 

rotational angle of the pendulum, with use of Coach 5 Video Measurement. It will be, 

according to his knowledge, first measurement of the rotation angle of Wilberforce pendulum 

bob and the second visualisation of its motion.  

Obtained results are compared with those described in [1] where experimental verification 

of the important features of the motion of the Wilberforce pendulum and results of the 

experiment, during which longitudinal displacement of its bob is measured with a ultrasound 

sensor, are presented. 
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The author also presents verification of motion equations of Wilberforce pendulum and 

calculates the value of a coupling constant for measured device. 
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III. Substance 

Chapter 1. Mechanics of Deformable Bodies 

1.1. Mechanical Properties of Materials 
 

When external forces or moments of forces are applied to a solid body its shape and/or 

volume can be changed. If these forces are not large the body will return to its original shape 

and volume immediately after the distorting forces are removed. This property of a solid body 

is called elasticity. 

If applied forces are sufficiently large the solid body can be permanently stretched. This is 

called plasticity. 

The way in which forces are applied determines 

the elastic behaviour of a solid body. One can specify 

three such ways, namely: longitudinal, volumetric 

and shearing forces. 

First the case when a parallelepiped block of 

uniform cross-sectional area S is under compression 

due to equal and opposite forces applied along its z-

axis will be considered. Figure 1.1.1 that was taken 

from [2] shows such a situation. The problem can be 

described with analogy if a tension force is applied to increase the length of the parallelepiped 

in the z-direction. In both cases the same effect is observed. 

When the compression force is increased from Fn to Fn+∆F, the initial length of the 

parallelepiped z will change to z-∆z. Observing dependence of the frictional change in length 

(so called longitudinal strain defined as ∆z/z) on the force per unit area (so called longitudinal 

stress defined as ∆F/S) one can see that as long as force is not too large ∆z/z is proportional to 

∆F/S. That is: 

S

F

z

z ∆∝∆
 or 

z

z
E

S

F ∆=∆
       (1.1.1) 

 

where E is constant of proportionality with unit [N/m2] and characterises the material from 

which the body is made. 

Figure 1.1.1. A parallelepiped solid block of 
elastic material under tension 
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The constant is called the Young modulus of the material and is defined by: 

 

dz

dF

S

z
E ⋅≡      (1.1.2) 

 

Examples of values of the Young modulus for a number of solids are given in a table 1.1.1 [3]. 

 

Table 1.1.1. Elastic constants of some common substances at 20oC 

Substance 
Young modulus 

N⋅m-2 
Shear modulus 

N⋅m-2 
bulk modulus 

N⋅m-2 
aluminium 7,0⋅1010 2,6⋅1010 7,6⋅1010 
brass 1,0⋅1011# 4,0⋅1010 1,0⋅1011# 
copper 1,3⋅1011 4,8⋅1010 1,4⋅1011 
gold 7,8⋅1010 2,7⋅1010 2,2⋅1011 
steel (mild) 2,1⋅1011 8,2⋅1010 1,7⋅1011 
# denotes approximate values 

 

In a case of permanent stretching the relationship between stress and strain is no longer 

linear. The forces produce the dislocation and process can not be completely reversed. The 

point at which the behaviour of a solid becomes non-linear 

and non-reversible is called the elastic limit. 

The second consideration of elastic properties of solid 

deals with volumetric stress. In this case forces that 

produce the extension of a solid are applied to the body 

equally in all directions. It causes a change in volume. Such 

a situation for a cube is shown in figure 1.1.2. that was 

found in [3]. All forces ∆F are applied perpendicularly to 

all six faces and produce a volume change ∆V. 

Assuming that the elastic limit is not exceeded one can 

see that the volumetric strain ∆V/V is proportional to the volumetric stress ∆F/S, where S is the 

area of one face of a cube. It can be written as: 

 

S

F

V

V ∆∝∆
 or 

V

V
K

S

F ∆−=∆
    (1.1.3) 

 

where K is a constant of proportionality with unit [N/m2] and called the bulk modulus. The 

constant is a characteristic of the material under study. 

Figure 1.1.2. A cubical solid block 
under a volumetric stress  
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The bulk modulus is defined as: 

 

dV

dF

S

V
K ⋅−≡           (1.1.4) 

 

The minus sign is included so that K is positive because dF/dV is always negative (an increase 

of applied force causes a decrease in volume). Examples of the bulk modulus for a number of 

materials are presented in table 1.1.1. 

As a last case the situation of a shearing stress will 

be considered. When equal and opposite forces are 

applied to opposite faces of a solid block it will act 

showing different elastic behaviour. Assume that the 

elastic limit is not exceeded and the cuboid returns to 

its original shape when the forces are removed. To 

invoke this effect one can consider the distortion of a 

solid cuboid by equal and opposite forces Fs that are 

applied tangentially to opposite faces of a cuboid. The situation is shown in figure 1.1.3, 

which was taken from [2]. 

The net effect of such forces is that the rectangular faces of the parallelepiped in the plane 

of he applied forces become parallelogram. A force per unit area applied tangentially is called 

a shearing stress. The corresponding shearing strain is defined (for a small ∆z) as ∆z/y or ∆γ. 

Taking to account recent assumption one can see that the stress is proportional to strain: 

 

S

F∆∝∆γ  or γ∆⋅=∆
G

S

F
       (1.1.5) 

 

where G is a constant of proportionality with unit [N/m2]. 

The constant is characteristic of the material called a shear modulus and defined as: 

 

γd

dF

S
G ⋅−≡ 1

        (1.1.6) 

 

Examples of the shear modulus for a number of materials are given in table 1.1.1. 

Figure 1.1.3. A solid parallelepiped block 
under a shearing stress 
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As it is shown in figure 1.1.1 the change in length z of a parallelepiped solid block in 

particular and bodies of different shape under a shearing stress in general is accompanying by 

changes of other dimensions - x and y. For isotropic bodies the following equation is valid: 

 

z

z

y

y

x

x ∆=∆=∆ ν            (1.1.6) 

 

where ν is a constant of proportionality called Poisson’s ratio. 

The constant has no unit and for majority of materials is enclosed between 0,2 and 0,4. When 

during deformation the change in volume does not take place ν is equal to 0,5. The presented 

constants satisfy the equation: 

)1(2 ν+
= E

G              (1.1.7) 

 

1.2. Tortional oscillation 
 

When rigid body is suspended from a vertical length of wire (or a rod) that is attached to a 

fixed point and a small twist has been given to it and then released from rest one can observe 

torsional oscillation. 

If angular displacement is θ and restoring torque is proportional to it, T= -cθ, one can write 

an equation: 

θθωω c
dt

d
I

dt

d
II

dt

d

dt

dL
T −=====

2

2

)(    (1.2.1) 

 

where L is an angular momentum, ω indicates angular velocity and I represents moment of 

inertia of the rigid body about the axis of the wire or rod. Looking at a last part of the equation 

one gets: 

0
2

2

=+ θθ
c

dt

d
I        (1.2.2) 

This is an equation of a simple harmonic oscillator. The rigid body executes simple harmonic 

oscillation about wire’s axis with a period: 

c

I
T ⋅= π2         (1.2.3) 
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A well-known example of a simple harmonic oscillator is a spring oscillator with a mass m 

attached to a helical spring with an elastic constant k. In this case the equation determining a 

period has a form: 

k

m
T ⋅=′ π2         (1.2.4) 

 

1.3. Influence of a Mass of a Spring on its Static and Dynamic 
 

Usually calculations of an elongation or an oscillation period of a spring pendulum are 

done with an assumption that the spring is massless. In reality this mass affects pendulum 

motion. 

As in [4] and [5] first a static case will be discussed. To find the solution one assumes that l 

is the unloaded spring length, m represents its mass and k is an elastic constant of a spring. 

The elongation of the unit of spring due to a force ∆G = k⋅∆l is: 

 

lk

G

l

l
l

∆=∆=′∆      (1.3.1) 

 

Therefore portion of the length dz suffers an elongation: 

 

dz
lk

G
ldzdz

∆=′∆=∆ )(               (1.3.2) 

Since: 

k

G
dz

′
∆=∆ )(      (1.3.3) 

 

one can consider an elastic constant of a small portion of a spring length dz as: 

 

dz

kl
k =′            (1.3.4) 

 

When a mass M is placed at the end of the spring the load acting to the element between z 

and z+dz becomes equal to: 
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G`=(M+m⋅(l-z)/l)⋅g      (1.3.5) 
 

and it suffers an elongation: 

 

dzg
kl

lzlmM

k

G
dz ⋅−+=

′
′

=∆ /)(
)(    (1.3.6) 

 

 

Integrating according to z from z=0 to z=l one gets the total elongation of the spring: 

 

∫
⋅+=⋅∆=∆

l

k

gmM
dzl

0

)2/(
    (1.3.7) 

 

It leads to conclusion that in static conditions the elongation suffered by a non-null mass 

spring is equivalent to supposing the spring is massless and adding a mass equal to half the 

mass of the spring to the bob’s mass M at its end. 

Elaborating a dynamic case one starts with assumption that mass M has been placed at the 

end of the spring, displaced from equilibrium position and then released. So, oscillations occur 

and the element of the spring dz suffers a deformation du that is produced by the force: 

 

z

u
kldz

z

u

dz

kl
dukF

∂
∂=

∂
∂=′=     (1.3.8) 

besides: 

dz
l

m
dmdz

z

F
dF =

∂
∂=      (1.3.9) 

According to the equation: 

2

2

t

u
dmdF

∂
∂=            (1.3.10) 

one gets: 

dz
t

u

l

m
dz

z

F
2

2

∂
∂=

∂
∂

     (1.3.11) 

hence: 

2

2

2

2

t

u

l

m

z

ud
kl

∂
∂=

∂
            (1.3.12) 
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This is the equation of a wave whose velocity is: 

 

m

kl
V

2

=          (1.3.13) 

 

To portrait the elongation u of the abscissa of a point z and the force one can write: 

 

u(z,t)=A⋅sin(β⋅z+ϕ)⋅sin(ω⋅t+α)         (1.3.14) 

 

z

u
kltzF

∂
∂=),(       (1.3.15) 

 

where ω is an angular frequency and β = ω/V and α, β are phase angles. The boundary 

conditions at the upper and lower ends are: 

 

z = 0; u(0,t) = 0     (1.3.16a) 

z = l; 
2

2

),(
t

u
MtlF

∂
∂=−        (1.3.16b) 

 

which, when entered in to (1.3.14) and (1.3.15), with assumption ϕ = 0, gives: 

 

u(z,t)=A⋅sin(β⋅z)sin(ω⋅t+α)            (1.3.17) 

F(z,t)=klAβ⋅cos(βz)⋅sin(ω⋅t+α)      (1.3.18) 

 

Therefore: 

)sin(sin
),(

),( 2
2

2

αωβω +=
∂

∂= tlAM
t

tlu
MtlF    (1.3.19) 

hence, 

ω2=(klβ)/(M⋅tg(βl))     (1.3.20) 

which, together with (1.3.13) and definition of β, gives an equation : 

 

tg(βl)=(M/m)βl          (1.3.21) 
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This allows to conclude that for each ratio between the mass M and spring mass m there is a 

set of solutions that correspond to the different modes of vibration of a system. As the relation 

M/m grows the solutions tend to the value (βl)n=(n-1)π, where n is the order number of a 

harmonics. For n=1 there is a fundamental vibration. When the mass of a spring m is 

extremely small in comparison to M the value of fundamental (βl) tends to zero and equation 

becomes the classical formula of a harmonic oscillator – formula (1.2.4). In any other case, 

one can write: 

ω2=k/(M+m/D)     (1.3.22) 

 

where m/D is a portion of whole mass of a spring m (D is an real number). 

When combined with (1.3.20) one obtains: 







−= ))(( lltg
l

M

m
D ββ

β      (1.3.23) 

 

For m/M → O, D = 3 and for m/M → ∞, D = π2/2 ≈ 2,467. 

For a spring whose length is small compared to ¼ of the wavelength of the characteristic 

vibration wavelength an assumption that the displacements of the elements of the spring are 

proportional to z can be made. In such a case, the whole system energy is given by: 

 
















 +=+=






+= ∫∫ 32

1

2
)(

2
)( 22

0

2
3

22
22

2
1

0

22
22

2
1

m
MAdzz

l

mA
AMdm

l

Az
AME

ll

ωωωωω  (1.3.24) 

 

where M is a mass of a bob and A an amplitude of its displacement from equilibrium position. 

It leads to conclusion that in dynamic conditions one has to add a mass equal to one-third of 

the mass of the spring to the bob’s mass M at its end in order to obtain the same energy. 
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1.4. Torsion and Bending of a Helical Spring 
 

One can obtain a helical spring by winding a few layers of a thin wire on a circular cylinder 

and then removing the mandrel. Such a spring is presented in  figure 1.4.1a. that was found in 

[2]. The wire in the diagram has been drawn with a ribbon shape to indicate behaviour of the 

spring when force F or moment M are applied, but the behaviour is independent of the actual 

shape. 

If one end of such a spring is attached to a fixed point and the other end loaded with a 

puck-shaped bob one obtains a system to be studied. When the bob’s weight is small so that 

the resulting pitch of the spring is small comparing to the radius of the cylinder rs one can 

observe a small load acting along the axis of the spring which results in a slightly increased 

pitch and a corresponding lengthening of the spring. This kind of loading is accompanied by 

torsion of the wire and illustrated in figure 1.4.1b. 

When the bob is turned in its own plane the pitch remains essentially unchanged and the 

spring yields to the torque by a slight diminution of the cylinder radius rs. In this case, as 

shown in figure 1.4.1c the wire is bent. 

Figure 1.4.1. 
Silhouette of a 
helical spring:  
a) in an 

equilibrium 
position,  

b) under torsion 
(force F, 
vertical 
displacement 
y),  

c) as a subject 
to bending 
(moment M, 
rotational 
displacement 
x) 
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In torsion the individual cross-sections of the wire are loaded by a torque about the polar 

axis while in bending the moment acts about on an axis in the plane of the cross-section. 

The load F acting along the cylinder axis has the moment F⋅rs about the centre of the cross-

section, the so called torsional moment Mt, since its axial vector is normal to the cross-section. 

In the case of bending the moment of force F’  acts upon the bob whose diameter has been 

assumed as 2rs. This moment has a character of a bending moment Mb since its axial vector 

coincides with the cylinder axis and can be transferred parallel to itself to the centre of the 

marled cross-section. In the loading there will be shear stresses in the plane of the cross-

section which increase proportionally to the distance from the wire axis and will be denoted by 

τ. Therefore one has: 

 

tMdfr =⋅⋅∫ τ      (1.4.1) 

 

where df is the area element of the cross section of a wire. 

In the loading normal stresses σ act upon the cross-section and they are proportional to the 

distance y which can be expressed as: 

bMdfy =⋅⋅∫ σ      (1.4.2) 

 

The entire torsion energy ET for the helical spring is equal to: 

 

P

s

P

t
T GJ

lrF

GJ

lM
E

22

222

==      (1.4.3) 

where l represents a length of a spring, G is a shear modulus and Jp denotes a polar moment of 

inertia of the cross-section which in the case of circular area is twice the equatorial moment of 

inertia [6].  

The entire bending energy contained in the spring is: 

 

EI

lrF

EI

lM
E sb

B 22

222 ′
==      (1.4.4) 

 

where I represents the equatorial moment of inertia and E is a Young modulus [6]. 
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The expressions (1.4.3) and (1.4.4) represent the energy content of the spring in an elastic 

deformation in which the spring passes through a sequence of states of equilibrium. These 

formulas can be compare with equations of the mechanical work performed along the path y 

and x when the load F and moment M increase gradually from 0 to their final value, which are: 

22

xF
W

Fy
W BT

′
==      (1.4.5) 

 

These lead to the determination of displacements x and y to be: 

 

F
EI

lr
xF

GJ

lr
y s

p

s ′==
22

    (1.4.6) 

 

According to the above and denoting m to represent mass of bob, L its moment of inertia and 

m’ the mass of spring itself one gets the equations of the free torsional and bending 

oscillations as: 

0
)( 2

3
12

2

=
′+

+ y
lrmm

GJ

dt

yd

s

P     (1.4.7) 

0
)( 22

3
12

2

=
′+

+ x
lrrmL

EI

dt

xd

ss

      (1.4.8) 

 

The associated circular frequencies are: 

lrrmL

EI

lrmm

GJ

ss

B

s

P
T 22

3
12

3
1 )()( ′+

=
′+

= ωω   (1.4.9) 

 

When they are equal or almost so resonance occurs and the behaviour of a spring is very 

sensitive to small changes of the parameters involved. Then the present theory is no longer 

sufficient and indeed one has two coupled modes of oscillations. 

Taking into account F and F’  as inertial forces: 

 

2

2

3
1

2

2

)(
dt

xd
mmF

dt

yd
mF ′+−=′−=   (1.4.10) 

 

the following equations that describe coupled oscillation of the spring are obtained: 
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0)(2
2

2

=−+ kxy
dt

yd
Tω      (1.4.11) 

0)(2
2

2

=−+ kyx
dt

xd
Bω      (1.4.12) 

 

1.5. Two Coupled Pendulums, Normal Modes and Beats 
 

When observing the motion of coupled pendulums shown in a figure 1.5.1a-c, that was 

taken from [7] a several different aspects of its behaviour, which depend of initial conditions 

of a device, can be noticed. 

 

When pendulum 1 is held at rest and pendulum 2 let to perform a few oscillations one 

observes that the first pendulum gradually begins to swing with increasing amplitude while the 

amplitude of the second pendulum diminishes. After certain amount of time the pendulum 

initially held at rest is swinging with the amplitude of the second pendulum at the beginning of 

its motion. Situation repeats and pendulum 1 loses its energy to pendulum 2. One can easily 

notice two periods, the one of oscillation of each pendulum and the second of the wandering 

energy from one pendulum to the other. 

When both pendulums start their oscillation together and in phase as it is shown in figure 

1.5.1b the exchange of energy is not observed. If it was not for frictional losses or transfer of 

energy into the surroundings the oscillations would go undamped. 

The diminishing of amplitude is also not noticeable for the motion of a system when the 

pendulums are started together but in anti-phase (situation in figure 1.5.1c). This motion is 

Figure 1.5.1. Two pendulums coupled with a spring: a) 1 held at rest and 2 displaced to perform oscillations,  
b) oscillations in phase, c) oscillations in anti-phase 
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characterised by a single frequency. Every part of a system maintains a constant phase 

relationship with respect to every other part. Such oscillations are called natural (or normal) 

modes. 

The oscillation frequency fsym of the pendulums oscillating in phase is practically the same 

as that of free pendulum because the spring is hardly neither contracted nor extended during 

motion. This mode is also called a symmetric mode. 

When pendulums oscillate in anti-phase the spring acts at every time and similarly to 

gravity force tends to restore equilibrium. Situation can 

be then described as motion of a pendulum with 

stronger gravitational force – bigger value of 

gravitational constant g. 

Therefore the frequency of the second mode, the so 

called anti-symmetric mode, is higher then that of the 

first: 

fasym > fsym. 

 

Every free oscillation of the system can be regarded 

as a superposition of normal modes. Some examples are 

presented in figure 1.5.2. 

As it has been already mentioned two modes do not 

proceed with the same frequency so time required for a 

full oscillation is: Tsym > Tasym. In time Tasym one mode 

makes one full oscillation and has Tsym-Tasym to cover a 

part of the next oscillation.  

So: 

)(
2)(22

symasym
symasym

asymsym

asymsymasym

ff
fT

TT
x

TT

x

T
−=

−
=

−
= πππ

  (1.5.1) 

 

Since during each oscillation the gain is x one gets n oscillations of the first mode when the 

second has gained the amount π in phase: 

)(2 symasym

sym

ff

f

x
n

−
== π

    (1.5.2) 

Figure 1.5.2. Examples of superposition of 
normal modes 
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When n is integral or a half-integral number the transfer of energy from pendulum 2 to 

pendulum 1 will be completed. 

The total energy of a pendulum for small angular displacement is given by: 

2

2A

l

mg
E =          (1.5.3) 

 

where m is the bob’s mass, l the length of a pendulum, g represents acceleration of gravity and 

A characterises amplitude of displacement.  

Since mg/2l is the same for all cases shown in a figure 1.5.2, one gets, for the superposition of 

modes, the balance of energy: 

 

(½A)2+ (½A)2+ (½A)2+ (½A)2=A2          (1.5.4) 
 

Similar balance holds for the potential energy of a spring, which is proportional to the square 

of its extension (or contraction). As long as superposition principle applies (small oscillation) 

the total energy is equal to the sum of the energies of the normal modes into which the motion 

can be decomposed. 

Coordinates exhibiting the total energy as a sum over normal modes are called normal 

coordinates. If one assumes x1 as a displacement of the pendulum 1 and x2 as a displacement 

of the pendulum 2 those coordinates can be written as: 

 

ζ = ½ (x1+x2)       (1.5.5a) 

η = ½ (x1-x2)        (1.5.5b) 

 

Considering the general case when n is neither integral nor half-integral one can conclude that 

the motion will be strictly periodic if the frequencies fsym and fasym satisfy the condition: 

τ==
asymsym f

q

f

p
      (1.5.6) 

 

where p and q are integers. In such a situation motion will repeat itself after time τ but return 

of energy will in general take a fraction of the time τ. 

If fsym  / fasym is not a rational number, motion of a system will not be strictly periodic. 
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When coupling is weak (a delicate spring) the value of n is large because n is inversely 

proportional to (fasym – fsym). 

The time that elapses until the faster mode has gained a phase angle after n oscillations is 

given by: 

 

)(2

11

symasymsym
sym fff

nnT
−

==       (1.5.7) 

 

Thus energy will return to the first pendulum after a period that is twice so. This period - 

2⋅nTsym is called beat period. Denoting this as B one has: 

 

symasym
sym ff

nTB
−

== 1
2       (1.5.8) 

There is N beats in one second then: 

symasym ff
B

N −== 1
     (1.5.9) 

 

1.6. Wilberforce Pendulum 
 

The Wilberforce pendulum was named for its inventor, Lionel Robert 

Wilberforce and represents an interesting case of coupled oscillations. 

The device consists of a helical spring of almost 2 meters and a 

cylindrical bob of the same radius. The bob has four vanes protruding 

from it and there is a nut on each of the vanes, which can be moved to 

change the moment of inertia of the system. Such a pendulum is 

illustrated in figure 1.6.1. which was found in [8]. It can be treated as a 

special case of the coupled oscillations of the longitudinal and the 

torsional modes for a mass hanging in a flexible helical spring. 

A weak coupling is due to torsional strains coming from stretching 

and shrinking of the spring and the axial strains during twisting. When 

the frequencies of both modes are almost equal the energy of the system 

is transferred back and forth between these two modes. 
Figure 1.6.1. Silhouette 
of the Wilberforce 
pendulum 
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One can analyse analytically this phenomenon assuming there are two coordinates z - the 

vertical displacement of a bob and θ - the angle of its rotation and that in the equilibrium 

position z=θ=0. If one considers a massless spring, with its longitudinal constant k and a 

torsional constant δ, to which a mass m, with a moment of inertia about its vertical axis I, has 

been attached and assumes a linear coupling of the form εzθ/2, the Lagrangian of the system 

has a form: 

θεδθθ zkzmzmL 2
12

2
12

2
12

2
12

2
1 −−−+= &&    (1.6.1) 

 

Thus the equations of motion of Wilberforce pendulum are: 
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                 (1.6.2b) 

 

As it has been already shown in paragraph 1.2 when the coupling does not take place one can 

observe simple oscillations. 

In order to eliminate coordinate z from the equations of motion, one can solve the first of 

them for θ : 

εε
θ

m

zk

dt

zdm 22
2

2

−⋅−=      (1.6.3) 

and using the values for the longitudinal and rotational frequencies: 

 

Imkz /;/ 22 δωω θ ==     (1.6.4) 

get fourth order derivation equation of a form: 
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Assuming a solution to be: 

tiAet ⋅= ωθ )(                                                                    (1.6.6) 



 24

 

one comes up with a bi-quadratic equation: 
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By solving this formula frequencies of two normal modes can be calculated: 
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For ωz = ω θ  = ω they can be simplified to: 
 

2
1

)
4

(
2

22
1 mI

εωω +=      (1.6.9a) 

2
1

)
4

(
2

22
2 mI

εωω −=      (1.6.9a) 

 

Being analogous to the situation described in paragraph 1.5. the values of ω1 and ω2 are 

close to each other and their difference ωB = ω1 - ω2 is the beat frequency between the two 

normal modes. 

The general form of the rotation angle as a function of time will be a combination of the 

two normal modes: 

 

tDtCtBtAt 2211 cossincossin)( ωωωωθ +++=    (1.6.10) 

 

when A, B, C, D are amplitudes of sine and cosine components of the modes. 

Thus: 

tDtCtBtAt 22221111 sincossincos)( ωωωωωωωωθ −+−=&   (1.6.11) 
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Using the equation of motion one gets general equation for z as a function of time in a form: 
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from which 
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From the initial conditions,  

0)0()0(0)0()0( 00 ==== θθθ &&zzz    (1.6.15) 

 

where an initial vertical displacement and initial twist (but no initial velocity in either 

coordinate) are given, one can gain values for the amplitudes: 

 

A = C = 0      (1.6.12) 
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Therefore the equations for both coordinates as functions of time have the form: 
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The vector X̂ describing the motion by such equations is a linear combination of the two 

normal modes with ẑ  describing longitudinal unit vector andθ̂  torsional unit vector: 
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where 1η̂ and 2η̂ are the normal coordinates of the form: 
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Also from equations (1.6.9) the coupling constant can be calculated: 
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1.7. Fourier analysis 

 

A mathematical technique known as Fourier analysis can be used to represent any function 

f(x) (where x may be position or time) as a series of periodic functions that is called Fourier 

series and can be written as: 
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The series consists a constant term ½a0 and sum of sine and cosine terms of different 

amplitudes an, bn. The frequencies of the trigonometric functions are harmonics of the 

fundamental frequency of x. To represent a certain waveform by Fourier series values of the 

coefficients have to be determined by integration of f(x) over period 2π with formulas: 
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The first term can be obtained by solving: 

∫=
π

π

2
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1
dxxfa               (4) 

 

With use of Fourier analysis fundamental frequencies of signals can be determined. Exact 

formulas for coefficients vary for different functions f(x) (periodic, nonperiodic function, wave 

packet) being analyse [9]. 



 28

Chapter 2. Creating Video Clips, Preparing to Measure and Analysing Results 

2.1. Setting up Experiments and Recording Video Clips 
 

Real experiments on motion of Wilberforce pendulum were 

carried out with the same device as described in [1]. The figure 2.1.1 

illustrates such a pendulum which contains: 

• a spring of 17 turns of a steel wire with radius r=7,25×10-4 m 

whose unloaded length is equal to l0=1,30×10-1 m and 

projected radius of the helix is Rs= 2,60×10-2 m; and whose 

mass is ms=3,43×10-2 kg, 

• a cylindrical bob with a radius Rb=3,50×10-2 m and mass 

m=4,3032×10-1 kg that contains two vanes protruding from it 

on which identical, free-to-move, nuts are located. 

Basing on founding about resonance of longitudinal and torsional oscillations reported in 

[1], experiments were done for the pendulum with its nuts placed symmetrically at a distance 

∆R = 3,50×10-2 m from the edge of a bob which corresponds to a value of a moment of inertia 

I = 0,000335 kgm-2 and with different combinations of the initial conditions determined by the 

longitudinal displacement z0 and an angle of twist of a bob θ0. These combinations are 

presented in table 2.1.1. 
 

Table 2.1.1. Combination of the initial conditions 

 

initial conditions experiment’s  
number z0 [m] θ0 [rad] 

1 0.04 0 
2 0.04 π/2 
3 -0.04 0 
4 -0.04 -π/2 
5 0 -π/2 
6 - 0.04 π/2 
7 0 π/2 
8 0.04 -π/2 

 

Experiments were carefully set up in a way that allows placing a video camera under the 

pendulum’s bob as well as in front of it. Special attention has been given to background and 

lighting. 

Figure 2.1.1 Silhouette 
of a used pendulum 
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For each set of initial conditions a number of one-minute clips of Wilberforce pendulum 

motion from both camera perspectives has been recorded, using a Sony® digital video camera 

DCR-TRV 8E. Specific information about the camera and its features can be found in [10]. 

All digital movies were carefully viewed on a big screen and the best one for every set of 

initial conditions has been chosen for further processing. Approximately 1200 captured frames 

for every combination of z0 and θ0 with a program for video editing were used. 

 

2.2. Editing Digital Movies with AdobePremiere 
 

AdobePremiere is an advanced program for creating and editing digital movies. It allows 

capturing and performing necessary processing (cutting, adding transitions, titles, motion, 

transparency etc.). After processing with the program a final clip can be produced in various 

formats. More information about the program and its features can be found [11]. 

To prepare video clips for data video measurement only a few simple processing acts have 

been performed. After capturing, each movie was cut to consist of 1025 frames presenting 

motion of the pendulum. Every movie was also cropped to reduce its size from 768×576 pixels 

(PAL standard) to a size shown in table 2.2.1. Because during process of covering a digital 

camera interlaces movie’s frames as a last an operation of deinterlacing was proceeded. 

Finally all video clips were converted into an *.avi format. The table 2.2.1 contains 

information about both kinds of movies made with a different camera perspective. 
 

Table 2.2.1. General information about video clips 
 

camera perspective bottom face 
frame width 380 pixels 480 pixels 
frame height 380 pixels 320 pixels 
frame length 41 sec 41 sec 
frame count 1025 1025 
frame rate 25 per sec 25 per sec 
average size 41 Mb 42 Mb 
video compression Cinepak Codec Cinepak Codec 

 

The figure 2.2.1a presents a first frame of a movie covered from the bottom and consisting 

of motion of the pendulum that has been released with initial longitudinal displacement  

z0 = 0.04 m and initial rotational angle θ0 = 0. The figure 1b shows a first frame of a movie 

done from front perspective and with the same initial conditions.  
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Figure 2.2.2. An explanation of a movie file name  

 

All movies (*.avi files) are recorded on 2 CDs (Wilberforce_b and Wilberforce_f) and 

enclosed in the thesis. Figure 2.2.2. explains names that have been given to them. 

 

2.3. Program Coach 5 and Data Video 
 

Coach 5 is an integrated software package developed by the CMA Foundation of the 

University of Amsterdam. The program is an open environment for investigation in science 

and technology and integrates measuring, data analysis and processing, modelling, controlling 

and video measuring. Only the last mode of the program – Data Video – is essential for the 

present case and will be described in depth. 

Video measurement allows collecting data from digital video clips in form of points that 

consist of x, y coordinates of a monitored element taken at certain time. The location of the 

item of interest is marked by clicking on its position in chosen frames of the whole movie. The 

Figure 2.2.1. First frames of video clips taken: a) from the bottom b) from the front 
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program supports *.avi and *.mov digital video formats. Although Coach 5 allows plotting 

data in graphs, viewing and calculating new quantities in tables and performing analysis, 

obtained data were exported from the program as a *.dif file. 

Further mathematical elaboration was carried out with a Microsoft® Excel 97 spreadsheet.  

To proceed with video measurement one has to determine: 

• a scaling factor – the distance on the movie frame that corresponds to actual (real life) 

distance, 

• a location of the axis for future measurements, 

• a setting of the origin, 

• a time calibration by noting the rate (x/per second) with which the processing movie 

has been made. 

All those requirements have been taken into account during the process of preparation of a 

movie to be measured and therefore: 

• as a scaling factor a value of a bob’s diameter has been used, 

• movies were covered with a rate of 25 frames per second, 

• information about a location of the origin and measurement procedure is described in 

the next chapter. 

Specific information about Data Video mode of Coach 5 can be found in [12]. Examples of 

Data Video activities are provided in [13]. 

 

2.4. MS Excel and its Fast Fourier Transform 
 

Program Microsoft® Excel is used to calculate, analyze and plot results of video 

measurements. Data is mathematically calculated in Excel spreadsheet and results are plotted 

in separate sheets. A data analysis tool – Fourier analysis that uses fast Fourier transform 

(FFT) – is applied to time domain data z=f(t) or θ=f(t)  to find their components. As a result of 

such a transformation a set of complex numbers – frequency domain output is gained. 

Fourier transform is based on the principle that any function can be represented as a 

superposition of sinusoidal components with certain amplitude. 

A frequency step in Excel FFT is indicated by the number of measured point which has to be 

an even number power of 2 and amplitude is obtained from an absolute value (modulus) of a 
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complex number. These are displayed as a graph of amplitudes of the components against 

their frequencies. Such a graph is called a spectrum. 
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Figure 3.1.1. A part of a Data Video window for 
a movie recorded from the front 

Chapter 3. The Experiments and Results 

3.1. The Experiments 
 

The video measurements were carried out with aid of the program Coach 5.  

On the series of 8 clips with a motion of Wilberforce pendulum viewed from its front the 

measurements of bob’s position on each frame were taken. The data, obtained by marking 

with Coach 5 Data Video mode a certain point on the device, contained 1024 triplets of time 

and position coordinates x and y. Only the pieces of information on y as a function of time 

were exported as a *.dif files and analyzed later on. Figure 3.1.1 shows a part of Data Video 

window with a frame of a movie with a measured point. Also an axis and a scaling factor are 

shown. 

On the next 8 clips, taken from the bottom of the pendulum, measurements of a position of 

the nut on a pendulum’s vanes have been taken. They also contained 1024 triplets of time and 

position coordinates x and y. According to the fact that an origin of the coordinate system was 

marked in the center of the pendulum, a rotation angle was mathematically calculated from 

both x and y coordinates. Figure 3.1.2 presents a part of Data Video window with a frame of a 

movie with a measured point, an axis and scaling factor. 

To present all finding and carry on calculations a Microsoft® Excel 97 spreadsheet was 
used. 
 

Figure 3.1.2. A part of a Data 
Video window for a movie 
recorded from the bottom 
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3.2. Statements of Experimental Results 
 

The table 3.2.1 presents a part of a Microsoft® Excel spreadsheet table in which data has 

been mathematically elaborated. 

The first column contains an index number, which is the same as a number of a frame on 

which the measurement took place. The next column contains time related to a frame at which 

a value of y was determined in a certain video clip. 

Because the axis was set as the same for every frame the quantity calculated with use of a 

formula: 

averagen yy −  

 

represents vertical displacement of the pendulum bob z. An average value of y that represents 

an equilibrium position of a bob is shown in a fourth column. The next column of the table 

encloses values of displacement z.  

On those results a fast Fourier transformation has been performed. The result of the 

procedure – a set of complex numbers – is presented in the sixth column. Information about 

amplitude of a certain frequency component is indicated by the absolute value (modulus) of 

those complex numbers. Those values are presented in eighth column, which is preceded by a 

column that shows values of frequencies. To normalise amplitudes, corresponding to Fourier 

analysis to unity a maximum value of this quantity has been determined and used to create the 

last column of the table according to an equation: 

maxA

A
A nn

nor = . 

 

Table 3.2.2 contains data and calculated results related to the 

second coordinate, the angle of rotation θ. Similarly to the first 

table three first columns enclosed index, time and y. The next one 

presents information about x position component of the location 

of a bob’s nut. The origin has been placed on every frame in a 

centre of a bob so its rotation angle can be calculated from x and 

y with use of trigonometry. Therefore the value of c - hypotenuse 

in a triangle shown in a figure 3.2.1 has been determined and presented in a fifth column.  

Figure 3.2.1. Coordinates x, 
y and c for video clips 
covered from the bottom 
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To calculate an angle a following if-and-statement has been used: 

 

IF {AND (y<0,x<0), 2⋅π - ACOS(y/c), IF [AND (y>0,x<0), -ACOS(y/c), ACOS(y/c)]} 

 

Such a formula was used to overcome difficulties that appear when function arctangent was 

used for angles outside the range [0,π]. 

Results of the calculations are contained in a sixth column of the table 3.2.2 and were used 

to obtain the average value of the angle that represents an equilibrium position of a bob 

(placed in the next column). A formula: 

avragen αα −  

 

allows calculating the second coordinate – torsional displacement of the pendulum bob θ. This 

information is presented in the eighth column. Similarly to the first table next columns consist 

of information about the results of the fast Fourier transformation, amplitudes of certain 

frequency components, maximum amplitude and normalised amplitudes. 

Based on the calculations a number of diagrams have been drawn. Diagrams 3.2.1 to 3.2.16 

with even numbers present vertical displacement z as a function of time for different initial 

condition while those of odd numbers illustrate Fourier spectrum for z(t). The diagrams 3.2.17 

to 3.2.32 with even numbers present rotation angle θ as a function of time for different initial 

condition while those of odd numbers illustrate Fourier spectrum for θ(t). 

Values of frequencies of modes f1=1,031 [Hz] and f2= 0.982 [Hz] where then used to 

calculate a frequency of a produced ‘tone’, a beating rate and the coupling constant (formula 

(19) in paragraph 1.6.) which were found to be: 

 

ft=1/2(f1+ f2)=1,007[Hz] 

fb= f1- f2=0,049[Hz] 

ε = 0,046 [kg⋅m⋅rad/ s] 
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3.3. Some Consideration of Video Measurement Accuracy 
 

Establishing accuracy for video measurement is problematic because it is not a commonly 

used method. The accuracy of such a measurement is mainly determined by the quality of a 

movie (focus) and its size (resolution). 

During a process of scaling both kinds of movies, the number of pixels indicating a real 

length has been measured to be: 

• for the video clip taken from bottom perspective:  

125pix = 7,0×10-2 m (1pix = 5,6×10-4 m), 

• for the video clip taken from face perspective:  

155pix = 7,0×10-2 m (1pix = 4,5×10-4 m). 

It has been experimentally checked that the movie of dimensions 380×380 pixels presented 

in a full size on a computer screen of 17”, with a resolution 1024×768 has a length 

l = 2,00×10-1m. The resolution of movies and their focus allows locating a certain point with 

accuracy ±2 pixels which on such a screen is equal to ∆l = ± 1,3×10-3 m. Therefore estimated 

accuracy of the video measurement from a movie is: 

• for the video clip taken from front perspective (one marked point on every frame):  

∆y = ± 0,9×10-3 m 

• for the video clip taken from bottom perspective (a point and axis marked on every 

frame): ∆y = ∆x = ± 2,2×10-3 m. 

According to accuracy of a position and a fact that a frequency step of fast Fourier 

transformation depends on a number of measured points the accuracy for frequency has been 

estimated as: 

• for the video clip taken from face perspective: ∆f = ± 0,025 Hz, 

• for the video clip taken from bottom perspective: ∆f = ± 0,05 Hz. 
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3.4. Conclusions 
 

Video measurements of motion of the Wilberforce pendulum allowed observing both types 

of the coupled oscillations, longitudinal and torsional ones. Visualization of the torsional 

oscillations is especially interesting, as in the previous paper [1], where ultrasonic sensor was 

used instead of a video camera and only the longitudinal oscillations were observed. All 

experiments in this paper were carried out for the cases of resonance between both kinds of 

oscillations. Fourier analyses of the results have revealed presence of one or two normal 

modes in each type of oscillations. According to motion of coupled pendulums, shown in the 

figure 1.5.1 the normal modes of the Wilberforce pendulum are obtained for certain initial 

conditions corresponding to releasing the coupled pendulums in the same phase (first mode) or 

in anti-phase (second mode). Table 3.4.1 summarises location of the peaks of frequency in 

spectrums. 

 

Table 3.4.1. Frequency values for peaks in spectrums 
 

initial conditions face perspective bottom perspect ive Experiment’s 
number z0 [m] θ0 [rad] f1 [Hz] f2 [Hz] f1 [Hz] f2 [Hz] 

1 0.04 0 0.982 1.031 0.982 1.031 
2 0.04 π/2 - 1.031 - 1.031 
3 -0.04 0 0.982 1.031 0.982 1.031 
4 -0.04 -π/2 - 1.031 - 1.031 
5 0 -π/2 0.982 1.031 0.982 1.055 
6 - 0.04 π/2 0.982 - 0.982 - 
7 0 π/2 0.982 1.031 0.982 1.055 
8 0.04 -π/2 - 1.031 0.982 - 

 

The first mode is visible as a dominating in the experiment 6 when the spring is pulled 

downwards and wound more tightly (figure 3.2.15, 3.2.16, 3.2.31, 3.2.32) and in the 

experiment 8 when the spring is lifted and unwound (figures 3.2.11, 3.2.12, 3.2.27, 3.2.28). 

The second mode is dominant in experiment 4 when the spring is pulled downwards and 

unwound (figure 3.2.7, 3.2.8, 3.2.19, 3.2.20) and in the experiment 2 when the spring is lifted 

and wound (figure 3.2.3, 3.2.4, 3.2.23, 3.2.24). Because it is very difficult to set the pendulum 

in motion very accurately, for almost all cases the other mode is noticeably present but its 

amplitude is very small.  

For the rest of the experiments (1, 3, 5, 7) the beats of both modes are observable. It is 

indicated by almost the same (or close) value of the amplitudes corresponding to the two 
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modes in the spectrum (figure 3.2.1, 3.2.2, 3.2.5, 3.2.6, 3.2.9, 3.2.10, 3.2.13, 3.2.14, 3.2.17, 

3.2.18, 3.2.21, 3.2.22, 3.2.25, 3.2.26, 3.2.29, 3.2.30). 

For measurements done on video clips covered from a face perspective (longitudinal 

oscillations) all peaks of frequency in spectrums are observed when f1 = 0,982[Hz] and  

f2 = 1,031[Hz]. The same results, within experimental accuracy, are gained for torsional 

oscillations. The average frequency ft = 1,006[Hz] (‘tone’ frequency) and the beating rate  

fb = 0,049[Hz] are in agreement with theoretical values for case of resonance (f1 = f2 = 

1,01[Hz]) and results presented in [1]. 

The results allowed calculating the value of coupling constant and confirm that the 

assumption about the linear coupling used when writing the motion equations (1.6.2a-b) is 

valid. 

An increase of accuracy can be obtained by enlarging a number of measured points or/and a 

size of a video movie (its width and height). This changes cost increase of time for taking date 

and size of a movie (in Mb). 
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IV. Closing Remarks 
 

The use of digital techniques seems to be useful and powerful tool for (re)investigation of 

various phenomena. Although it requires considerable work to prepare a movie and special 

processing to make measurements, it is still worth doing. The fact that once produced the 

movie which can be copied and used by many investigators encourages taking advantage of 

such a measurement. Especially having in mind the growing number of computers that are 

used in education at the secondary and university level it indicates one new future use of ICT 

in schools. 

Use of a data video measurement allows students to go with their interest outside of school. 

It can also be used to explore and analyze many aspects of motion in everyday life. 

The present study shows that already existing programs such as Coach 5, AdobePremiere 

and Excel can be used with great success in the field of scientific investigation. It also points 

out that an increase in accuracy of data video and decrease in time necessary to take 

measurements would be welcome especially when the number of video points is large. This 

can be obtained by automating the data collection process. Therefore a procedure of 

automatically recognising and marking a characteristic point on every frame (for example one 

certain colour) could be implemented into a program. 

Nevertheless also more complicated examples of motion and aspects related to it can be 

investigated with use of data video. An example of such an interesting problem for further 

consideration can be a study on motion of a human body. 
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